On the efficient path integral evaluation of thermal rate constants within the quantum instanton approximation.

نویسندگان

  • Takeshi Yamamoto
  • William H Miller
چکیده

We present an efficient path integral approach for evaluating thermal rate constants within the quantum instanton (QI) approximation that was recently introduced to overcome the quantitative deficiencies of the earlier semiclassical instanton approach [Miller, Zhao, Ceotto, and Yang, J. Chem. Phys. 119, 1329 (2003)]. Since the QI rate constant is determined solely by properties of the (quantum) Boltzmann operator (specifically, by the zero time properties of the flux-flux and delta-delta correlation functions), it can be evaluated by well-established techniques of imaginary time path integrals even for quite complex chemical reactions. Here we present a series of statistical estimators for relevant quantities which can be evaluated straightforwardly with any nonlinear reaction coordinates and general Hamiltonians in Cartesian space. To facilitate the search for the optimal dividing surfaces required by the QI approximation, we introduce a two-dimensional quantum free energy surface associated with the delta-delta correlation function and describe how an adaptive umbrella sampling can be used effectively to construct such a free energy surface. The overall computational procedure is illustrated by the application to a hydrogen exchange reaction in gas phase, which shows excellent agreement of the QI rates with those obtained from quantum scattering calculations.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Quantum instanton approximation for thermal rate constants of chemical reactions

A quantum mechanical theory for chemical reaction rates is presented which is modeled after the #semiclassical !SC"$ instanton approximation. It incorporates the desirable aspects of the instanton picture, which involves only properties of the !SC approximation to the" Boltzmann operator, but corrects its quantitative deficiencies by replacing the SC approximation for the Boltzmann operator by ...

متن کامل

ARTICLES Quantum instanton approximation for thermal rate constants of chemical reactions

A quantum mechanical theory for chemical reaction rates is presented which is modeled after the #semiclassical !SC"$ instanton approximation. It incorporates the desirable aspects of the instanton picture, which involves only properties of the !SC approximation to the" Boltzmann operator, but corrects its quantitative deficiencies by replacing the SC approximation for the Boltzmann operator by ...

متن کامل

Test of the quantum instanton approximation for thermal rate constants for some collinear reactions.

Two variants of the recently developed quantum instanton (QI) model for calculating thermal rate constants of chemical reactions are applied to several collinear atom-diatom reactions with various skew angles. The results show that the original QI version of the model is consistently more accurate than the "simplest" quantum instanton version (both being applied here with one "dividing surface"...

متن کامل

Path integral evaluation of the quantum instanton rate constant for proton transfer in a polar solvent.

The quantum instanton approximation for thermal rate constants, a type of quantum transition state theory (QTST), is applied to a model proton transfer reaction in liquid methyl chloride developed by Azzouz and Borgis. Monte Carlo path integral methods are used to carry out the calculations, and two other closely related QTST's, namely, the centroid-density and Hansen-Andersen QTST, are also ev...

متن کامل

Direct evaluation of the temperature dependence of the rate constant based on the quantum instanton approximation.

A general method for the direct evaluation of the temperature dependence of the quantum-mechanical reaction rate constant in many-dimensional systems is described. The method is based on the quantum instanton approximation for the rate constant, thermodynamic integration with respect to the inverse temperature, and the path integral Monte Carlo evaluation. It can describe deviations from the Ar...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Journal of chemical physics

دوره 120 7  شماره 

صفحات  -

تاریخ انتشار 2004